192 research outputs found

    Patulous Eustachian tube after Le Fort I osteotomy in a cleft palate patient

    Get PDF
    postprin

    Indoor path loss model for 4G wireless network at 2.6 GHz

    Get PDF
    In this paper, a short-range, narrowband indoor propagation at 2.6 GHz was measured and modeled. The measurement campaign was conducted to characterize the path loss (PL) of Radio frequency (RF) at the Razak School building corridor. The corridor has unique structure and segmented in different sections. The irregular structure of corridor, further with various interior material used gives the unique characterization to the received power. The research work made in this paper is predominately targets to characterizing radio link of 2.6 GHz frequency in typical indoor corridor

    Comparison of Very Low Energy Diet Products Available in Australia and How to Tailor Them to Optimise Protein Content for Younger and Older Adult Men and Women

    Get PDF
    Very low energy diets (VLED) are efficacious in inducing rapid weight loss but may not contain adequate macronutrients or micronutrients for individuals with varying nutritional requirements. Adequate protein intake during weight loss appears particularly important to help preserve fat free mass and control appetite, and low energy and carbohydrate content also contributes to appetite control. Therefore, the purpose of this study was to compare the nutritional content (with a focus on protein), nutritional adequacy and cost of all commercially-available VLED brands in Australia. Nutritional content and cost were extracted and compared between brands and to the Recommended Dietary Intake (RDI) or adequate intake (AI) of macronutrients and micronutrients for men and women aged 19–70 years or >70 years. There was wide variability in the nutritional content, nutritional adequacy and cost of VLED brands. Most notably, even brands with the highest daily protein content, based on consuming three products/day (KicStart™ and Optislim®, ~60 g/day), only met estimated protein requirements of the smallest and youngest women for whom a VLED would be indicated. Considering multiple options to optimise protein content, we propose that adding pure powdered protein is the most suitable option because it minimizes additional energy, carbohydrate and cost of VLEDs

    Millimeter wave propagation measurements and characteristics for 5G system

    Get PDF
    In future 5G systems, the millimeter wave (mmWave) band will be used to support a large capacity for current mobile broadband. Therefore, the radio access technology (RAT) should be made available for 5G devices to help in distinct situations, for example device-to-device communications (D2D) and multi-hops. This paper presents ultra-wideband channel measurements for millimeter wave bands at 19, 28, and 38 GHz. We used an ultra-wideband channel sounder (1 GHz bandwidth) in an indoor to outdoor (I2O) environment for non-line-of-sight (NLOS) scenarios. In an NLOS environment, there is no direct path (line of sight), and all of the contributed paths are received from different physical objects by refection propagation phenomena. Hence, in this work, a directional horn antenna (high gain) was used at the transmitter, while an omnidirectional antenna was used at the receiver to collect the radio signals from all directions. The path loss and temporal dispersion were examined based on the acquired measurement data—the 5G propagation characteristics. Two different path loss models were used, namely close-in (CI) free space reference distance and alpha-beta-gamma (ABG) models. The time dispersion parameters were provided based on a mean excess delay, a root mean square (RMS) delay spread, and a maximum excess delay. The path loss exponent for this NLOS specific environment was found to be low for all of the proposed frequencies, and the RMS delay spread values were less than 30 ns for all of the measured frequencies, and the average RMS delay spread values were 19.2, 19.3, and 20.3 ns for 19, 28, and 38 GHz frequencies, respectively. Moreover, the mean excess delay values were found also at 26.1, 25.8, and 27.3 ns for 19, 28, and 38 GHz frequencies, respectively. The propagation signal through the NLOS channel at 19, 28, and 38 GHz was strong with a low delay; it is concluded that these bands are reliable for 5G systems in short-range applications

    Design and validation of an adaptive CubeSat transmitter system

    Get PDF
    CubeSat in low earth orbit (LEO) primarily uses an amateur radio-band transmitter with a fixed specification. Nevertheless, the LEO satellite does not have an orbital velocity that equates to one sidereal day. Therefore, the ground station antenna views the satellite at different elevation angles which result in varied propagation path lengths. In this paper, an adaptive transmitter is designed to optimise the LEO satellite communication link and overcome the variability of the propagation path length issue due to different ground station elevation angles. A satellite communication link and operation analyses are performed to identify the relationship between the variation of the elevation angle so as to determine the optimum signal-to-noise ratio (SNR), improve data rate and increase the power efficiency of an adaptive link. Based on the results, a model is developed to control the adaptive configuration. The SNR and power consumption performance of the developed transmitter is compared with commercial transmitters. The results indicate that the transmitter output power is adjustable from 0.5 W to 1 W, and the data rate is selectable between 9600 bps and 19,200 bps. Compared to other CubeSat transmitters, the developed adaptive transmitter demonstrates more than 20% improvement in terms of SNR optimisation, additional throughput and power reduction

    Non-cooperative power control game in D2D underlying networks with variant system conditions

    Get PDF
    In this paper, the problem of power control using a game theoretic approach based on sigmoid cost function is studied for device-to-device (D2D) communications underlying cellular networks. A non-cooperative game, where each D2D transmitter and a cellular user select their own transmit power level independently, is analyzed to minimize their user-serving cost function and achieve a target signal to interference-plus-noise-ratio (SINR) requirement. It is proved analytically that the Nash equilibrium point of the game exists and it is unique under certain constraints. Numerical results verify the analysis and demonstrate the effectiveness of the proposed game with variant system conditions, such as path loss exponents, target SINR, interference caused by the cellular user, pricing coefficients, and sigmoid control parameter

    Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV) following in vivo escape from neutralising antibody

    Get PDF
    <b>BACKGROUND:</b> In the acute phase of infection with feline immunodeficiency virus (FIV), the virus targets activated CD4+ T cells by utilising CD134 (OX40) as a primary attachment receptor and CXCR4 as a co-receptor. The nature of the virus-receptor interaction varies between isolates; strains such as GL8 and CPGammer recognise a "complex" determinant on CD134 formed by cysteine-rich domains (CRDs) 1 and 2 of the molecule while strains such as PPR and B2542 require a more "simple" determinant comprising CRD1 only for infection. These differences in receptor recognition manifest as variations in sensitivity to receptor antagonists. In this study, we ask whether the nature of the virus-receptor interaction evolves in vivo.<p></p> <b>RESULTS:</b> Following infection with a homogeneous viral population derived from a pathogenic molecular clone, a quasispecies emerged comprising variants with distinct sensitivities to neutralising antibody and displaying evidence of conversion from a "complex" to a "simple" interaction with CD134. Escape from neutralising antibody was mediated primarily by length and sequence polymorphisms in the V5 region of Env, and these alterations in V5 modulated the virus-receptor interaction as indicated by altered sensitivities to antagonism by both anti-CD134 antibody and soluble CD134.<p></p> <b>CONCLUSIONS:</b> The FIV-receptor interaction evolves under the selective pressure of the host humoral immune response, and the V5 loop contributes to the virus-receptor interaction. Our data are consistent with a model whereby viruses with distinct biological properties are present in early versus late infection and with a shift from a "complex" to a "simple" interaction with CD134 with time post-infection.<p></p&gt

    Selective expansion of viral variants following experimental transmission of a reconstituted feline immunodeficiency virus quasispecies

    Get PDF
    Following long-term infection with virus derived from the pathogenic GL8 molecular clone of feline immunodeficiency virus (FIV), a range of viral variants emerged with distinct modes of interaction with the viral receptors CD134 and CXCR4, and sensitivities to neutralizing antibodies. In order to assess whether this viral diversity would be maintained following subsequent transmission, a synthetic quasispecies was reconstituted comprising molecular clones bearing envs from six viral variants and its replicative capacity compared in vivo with a clonal preparation of the parent virus. Infection with either clonal (Group 1) or diverse (Group 2) challenge viruses, resulted in a reduction in CD4+ lymphocytes and an increase in CD8+ lymphocytes. Proviral loads were similar in both study groups, peaking by 10 weeks post-infection, a higher plateau (set-point) being achieved and maintained in study Group 1. Marked differences in the ability of individual viral variants to replicate were noted in Group 2; those most similar to GL8 achieved higher viral loads while variants such as the chimaeras bearing the B14 and B28 Envs grew less well. The defective replication of these variants was not due to suppression by the humoral immune response as virus neutralising antibodies were not elicited within the study period. Similarly, although potent cellular immune responses were detected against determinants in Env, no qualitative differences were revealed between animals infected with either the clonal or the diverse inocula. However, in vitro studies indicated that the reduced replicative capacity of variants B14 and B28 in vivo was associated with altered interactions between the viruses and the viral receptor and co-receptor. The data suggest that viral variants with GL8-like characteristics have an early, replicative advantage and should provide the focus for future vaccine development

    Challenges and Performance Evaluation of Multicast Transmission in 60 GHz mmWave

    Get PDF
    Recently, millimeter-wave (mmWave) technology has attracted significant attention due to its ambitious promise to deal with the rapid growth in wireless data traffic. Moreover, mmWave is expected to constitute a foundation for the fifth-generation (5G) communication systems' services, claimed to efficiently and effectively support both unicast and multicast transmission modes. However, the use of highly directional antennas at both user and access point sides is required to compensate for the severe path loss, high attenuation, and atmospheric absorption at extremely high-frequency bands, e.g., mmWave. Hence, multicast transmission needs special attention in directional systems due to the nature of group-oriented services, wherein a single beam simultaneously feeds receivers located at different positions. Since the widest possible beams at 60\,GHz band are limited in terms of range and data rate and cannot serve all users, and, inversely, the use of only fine beams steered toward each user in unicast fashion requires long data transmission duration, the design of efficient directional multicast schemes is of utmost importance. Further, a slight beam misalignment due to mobility can generate a significant signal drop even between devices communicating in unicast fashions. The mission of this paper is to discuss the main challenges that must be faced to take advantage of mmWave communication for multicast data delivery. To this end, we investigate the performance of such systems in terms of data rate and data transmission duration via simulations considering both static and dynamic scenarios.acceptedVersionPeer reviewe
    corecore